APL-UW Home

Jobs
About
Campus Map
Contact
Privacy
Intranet

Luc Rainville

Head, OPD Department & Principal Oceanographer

Affiliate Assistant Professor, Oceanography

Email

rainville@apl.washington.edu

Phone

206-685-4058

Biosketch

Dr. Rainville's research interests reside primarily in observational physical oceanography and span the wide range of spatial and temporal scales in the ocean. From large-scale circulation to internal waves to turbulence, the projects he is involved in focus on the interactions between phenomena of different scales. He is motivated to find simple and innovative ways to study the ocean, primarily through sea-going oceanography but also using with remote sensing and modeling.

In particular, Luc Rainville is interested in how phenomena typically considered 'small-scale' impact the oceanic system as a whole.

* Propagation of internal waves through eddies and fronts.
* Water mass formation and transformation by episodic forcing events.
* Mixing and internal waves in the Arctic and in the Southern Ocean.


Dr. Rainville joined the Ocean Physics Department at APL-UW at the end of 2007.

Department Affiliation

Ocean Physics

Education

B.Sc. Physics, McGill University, 1998

Ph.D. Oceanography, Scripps Institution of Oceanography, 2004

Luc Rainville's Website

https://iop.apl.washington.edu/

Projects

Stratified Ocean Dynamics of the Arctic — SODA

Vertical and lateral water properties and density structure with the Arctic Ocean are intimately related to the ocean circulation, and have profound consequences for sea ice growth and retreat as well as for prpagation of acoustic energy at all scales. Our current understanding of the dynamics governing arctic upper ocean stratification and circulation derives largely from a period when extensive ice cover modulated the oceanic response to atmospheric forcing. Recently, however, there has been significant arctic warming, accompanied by changes in the extent, thickness distribution, and properties of the arctic sea ice cover. The need to understand these changes and their impact on arctic stratification and circulation, sea ice evolution, and the acoustic environment motivate this initiative.

31 Oct 2016

The Submesoscale Cascade in the South China Sea

This research program is investigating the evolution of submesoscale eddies and filaments in the Kuroshio-influenced region off the southwest coast of Taiwan.

More Info

26 Aug 2015

Science questions:
1. What role does the Kuroshio play in generating mesoscale and submesoscale variability modeled/observed off the SW coast of Taiwan?
2. How does this vary with atmospheric forcing?
3. How do these features evolve in response to wintertime (strong) atmospheric forcing?
4. What role do these dynamics play in driving water mass evolution and interior stratification in the South China Sea?
5. What role do these dynamics/features have on the transition of water masses from northern SCS water into the Kuroshio branch water/current and local flow patterns?

Salinity Processes in the Upper Ocean Regional Study — SPURS

The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate.

15 Apr 2015

More Projects

Publications

2000-present and while at APL-UW

Surface wave development and ambient sound in the ocean

Thomson, J., J. Yang, R. Taylor, E.J. Rainville, K. Zeiden, L. Rainville, S. Brenner, M. Ballard, and M.F. Cronin, "Surface wave development and ambient sound in the ocean," J. Geophys. Res., 129, doi:10.1029/2024JC021921, 2024.

More Info

22 Dec 2024

Wind, wave, and acoustic observations are used to test a scaling for ambient sound levels in the ocean that is based on wind speed and the degree of surface wave development (at a given wind speed). The focus of this study is acoustic frequencies in the range 1–20 kHz, for which sound is generated by the bubbles injected during surface wave breaking. Traditionally, ambient sound spectra in this frequency range are scaled by wind speed alone. In this study, we investigate a secondary dependence on surface wave development. For any given wind-speed, ambient sound levels are separated into conditions in which waves are 1) actively developing or 2) fully developed. Wave development is quantified using the non-dimensional wave height, a metric commonly used to analyze fetch or duration limitations in wave growth. This simple metric is applicable in both coastal and open ocean environments. Use of the wave development metric to scale sound spectra is first motivated with observations from a brief case study near the island of Jan Mayen (Norwegian Sea), then robustly tested with long time-series observations of winds and waves at Ocean Station Papa (North Pacific Ocean). When waves are actively developing, ambient sound levels are elevated 2–3 dB across the 1–20 kHz frequency range. This result is discussed in the context of sound generation during wave breaking and sound attenuation by persistent bubble layers.

Blocked drainpipes and smoking chimneys: Discovery of new near-inertial wave phenomena in anticyclones

Thomas, L.N., J.N. Moum, L. Qu, J.P. Hilditch, E. Kunze, L. Rainville, and C.M. Lee, "Blocked drainpipes and smoking chimneys: Discovery of new near-inertial wave phenomena in anticyclones," Oceanography, 37, 22-33, doi:10.5670/oceanog.2024.304, 2024.

More Info

1 Dec 2024

Time-varying winds blowing over an eddying ocean generate near-​inertial waves (NIWs) that tend to be trapped in anticyclones. Such anticyclones have been termed inertial chimneys in the past but have recently been renamed inertial drainpipes, given their propensity to funnel NIW energy downward to the deep ocean. Here, we present evidence of a semi-blocked inertial drainpipe where downward-​propagating NIWs trapped in an anticyclone are partially reflected off the permanent pycnocline, returned toward the surface, and dissipated at the top of the seasonal pycnocline in a submesoscale filament of anticyclonic vorticity. Observations made on the northern rim of an anticyclone in the Iceland Basin include a high-​resolution survey of velocity, hydrography, and microstructure. Upward-propagating NIWs were observed in a salty, submesoscale filament of anticyclonic vorticity near the edge of the eddy, potentially trapped there. Above the filament and at the top of the seasonal pycnocline, turbulence was enhanced over what could be attributed to local winds and surface cooling. Ray tracing suggests the filament could have channeled and focused trapped upward-propagating NIWs, acting as an inertial chimney in a truer sense of the term, possibly intensifying the wave energy sufficiently to sustain the observed turbulence. Numerical simulations of NIWs in anticyclonic vorticity and stratification representative of the observations suggest that the upward-propagating NIWs could have been generated by a wind event 12 days prior and reflected off a sharp jump in stratification at the base of the anticyclone. Here, the transition between the weakly stratified winter mixed layer and the permanent pycnocline partially reflects downward-​propagating NIWs, limiting the inertial drainpipe effect.

Observations of the upper ocean from autonomous platforms during the passage of extratropical Cyclone Epsilon (2020)

Zimmerman, M.T., and 8 others including L. Rainville and C.M. Lee, "Observations of the upper ocean from autonomous platforms during the passage of extratropical Cyclone Epsilon (2020)," Oceanography, 37, 48-57, doi:10.5670/oceanog.2024.303, 2024.

More Info

1 Dec 2024

This paper presents the preliminary findings of an observational array, comprised of an eXpendable Spar (X-Spar) buoy, an Air-Launched Autonomous Micro-Observer (ALAMO) profiling float, and two Seagliders, that observed the passage of Extratropical Cyclone Epsilon during the Near Inertial Shear and Kinetic Energy in the North Atlantic Experiment (NISKINe). We investigate the input of near-inertial and kinetic energy into the upper ocean, specifically in relation to how these phenomena impacted upper-ocean structure as a result of the storm’s passage. We describe the methodology used to summarize the development of an autonomous approach to observing hurricanes and extratropical cyclones and to elucidate how similarly designed observational campaigns can be further used to study the physics governing the evolution of upper-ocean dynamics during and after storms.

More Publications

Acoustics Air-Sea Interaction & Remote Sensing Center for Environmental & Information Systems Center for Industrial & Medical Ultrasound Electronic & Photonic Systems Ocean Engineering Ocean Physics Polar Science Center
Close

 

Close