![]() |
Tyler Sutterley Research Scientist/Engineer - Senior tsutterley@apl.washington.edu Phone 206-616-0361 |
Education
B.S. Mechanical Engineering, University of California, San Diego, 2008
M.S. Earth System Science, University of California, Irvine, 2012
Ph.D. Earth System Science, University of California, Irvine, 2016
Publications |
2000-present and while at APL-UW |
![]() |
Multi-decadal evolution of Crary Ice Rise region, West Antarctica, amid modern ice-stream deceleration Verboncoeur, H., and 7 others including T.C. Sutterley, "Multi-decadal evolution of Crary Ice Rise region, West Antarctica, amid modern ice-stream deceleration," J. Glaciol., 71, doi:10.1017/jog.2024.79, 2024. |
More Info |
28 Oct 2024 ![]() |
![]() |
|||||
The ongoing deceleration of Whillans Ice Stream, West Antarctica, provides an opportunity to investigate the co-evolution of ice-shelf pinning points and ice-stream flux variability. Here, we construct and analyze a 20-year multi-mission satellite altimetry record of dynamic ice surface-elevation change (dh/dt) in the grounded region encompassing lower Whillans Ice Stream and Crary Ice Rise, a major pinning point of Ross Ice Shelf. We developed a new method for generating multi-mission time series that reduces spatial bias and implemented this method with altimetry data from the Ice, Cloud, and land Elevation Satellite (ICESat; 200309), CryoSat-2 (2010present), and ICESat-2 (2018present) altimetry missions. We then used the dh/dt time series to identify persistent patterns of surface-elevation change and evaluate regional mass balance. Our results suggest a persistent anomalous reduction in ice thickness and effective backstress in the peninsula connecting Whillans Ice Plain to Crary Ice Rise. The multi-decadal observational record of pinning-point mass redistribution and grounding zone retreat presented in this study highlights the on-going reorganization of the southern Ross Ice Shelf embayment buttressing regime in response to ice-stream deceleration. |
![]() |
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models Studinger, M., B.E. Smith, N. Kurtz, A. Petty, T. Sutterly, and R. Tilling, "Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models," Cryophere, 18, 2625-2652, doi:10.5194/tc-18-2625-2024, 2024. |
More Info |
31 May 2024 ![]() |
![]() |
|||||
Differential penetration of green laser light into snow and ice has long been considered a possible cause of range and thus elevation bias in laser altimeters. Over snow, ice, and water, green photons can penetrate the surface and experience multiple scattering events in the subsurface volume before being scattered back to the surface and subsequently the instrument's detector, therefore biasing the range of the measurement. Newly formed sea ice adjacent to open-water leads provides an opportunity to identify differential penetration without the need for an absolute reference surface or dual-color lidar data. We use co-located, coincident high-resolution natural-color imagery and airborne lidar data to identify surface and ice types and evaluate elevation differences between those surfaces. The lidar data reveals that apparent elevations of thin ice and finger-rafted thin ice can be several tens of centimeters below the water surface of surrounding leads, but not over dry snow. These lower elevations coincide with broadening of the laser pulse, suggesting that subsurface volume scattering is causing the pulse broadening and elevation shift. To complement our analysis of pulse shapes and help interpret the physical mechanism behind the observed elevation biases, we match the waveform shapes with a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse, the surface roughness, and the optical scattering properties of the medium. We parameterize the scattering in our model based on the scattering length Lscat, the mean distance a photon travels between isotropic scattering events. The largest scattering lengths are found for thin ice that exhibits the largest negative elevation biases, where scattering lengths of several centimeters allow photons to build up considerable range biases over multiple scattering events, indicating that biased elevations exist in lower-level Airborne Topographic Mapper (ATM) data products. Preliminary analysis of ICESat-2 ATL10 data shows that a similar relationship between subsurface elevations (restored negative freeboard) and "pulse width" is present in ICESat-2 data over sea ice, suggesting that biased elevations caused by differential penetration likely also exist in lower-level ICESat-2 data products. The spatial correlation of observed differential penetration in ATM data with surface and ice type suggests that elevation biases could also have a seasonal component, increasing the challenge of applying a simple bias correction. |
![]() |
Role of snowfall versus air temperatures for Greenland Ice Sheet meltalbedo feedbacks Ryan, J.C., B. Medley, C.M. Stevens, T.C. Sutterleg, and M.R. Siegfried, "Role of snowfall versus air temperatures for Greenland Ice Sheet meltalbedo feedbacks," Earth Space Sci., 10, doi:10.1029/2023EA003158, 2023. |
More Info |
27 Nov 2023 ![]() |
![]() |
|||||
The Greenland Ice Sheet is a leading contributor to global sea-level rise because climate warming has enhanced surface meltwater runoff. Melt rates are particularly sensitive to air temperatures due to feedbacks with albedo. The primary melt-albedo feedback, fluctuation of seasonal snowlines, however, is determined not only by melt but also by antecedent snowfall which could delay the onset of dark glacier ice exposure. Here we investigate the role of snowfall versus air temperatures on ice sheet meltalbedo feedbacks using satellite remote sensing and atmospheric reanalysis data. We find several lines of evidence that snowline fluctuations are driven primarily by air temperatures and that snowfall is a secondary control. First, standardized linear regressions indicate that the timing of glacier ice exposure is nearly twice as sensitive to air temperatures than antecedent snowfall. Second, in 74% of the ablation zone by area, winter snowfall rates are not significantly correlated with winter air temperatures. This relationship implies that ice sheet melt due to climate warming is unlikely to be compensated by higher snowfall rates in the ablation zone. Third, we find no significant change in snowfall rates in the ablation zone during our 19812021 study period. Our findings demonstrate that snowfall is unlikely to reduce future ice sheet melt and that ice sheet meltwater runoff should be accurately predicted by air temperatures. Although given the importance of melt-albedo feedbacks, ice sheet models that parameterize albedo or are coupled with regional climate models are likely to provide the most accurate projections of mass loss. |