Jeff Thiel Research Scientist/Engineer II jthiel@apl.uw.edu Phone 206-221-4731 |
Education
B.S. Diagnostic Medical Ultrasound, Seattle University, 1992
Videos
![]() |
Ultrasonic Propulsion of Residual Kidney Stone Framents Ultrasonic propulsion, an investigational kidney stone treatment for awake un-anesthetized patients, sweeps stone fragments toward the ureter to facilitate their natural passage through the urine. |
More Info |
9 Sep 2024
|
![]() |
|||||
Ultrasonic propulsion, an investigational kidney stone treatment for awake un-anesthetized patients, sweeps stone fragments toward the ureter to facilitate their natural passage through the urine. |
Publications |
2000-present and while at APL-UW |
![]() |
Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography Ponomarchuk, E., G. Thomas, M. Song, Y.-N. Wang, S. Totten, G. Schade, J. Thiel, M. Bruce, V. Khokhlova, and T. Khokhlova, "Advancing boiling histotripsy dose in ex vivo and in vivo renal tissues via quantitative histological analysis and shear wave elastography," Ultrasound Med. Biol., 50, 1936-1944, doi:10.1016/j.ultrasmedbio.2024.08.022, 2024. |
More Info |
1 Dec 2024 ![]() |
![]() |
|||||
Objective |
![]() |
Randomized controlled trial of ultrasonic propulsion-facilitated clearance of residual kidney stone fragments vs. observation Sorensen, M.D., and 16 others including B. Dunmire, J. Thiel, B.W. Cunitz, J.C. Kucewicz, and M.R. Bailey, "Randomized controlled trial of ultrasonic propulsion-facilitated clearance of residual kidney stone fragments vs. observation," J. Urol., 6, 811-820, doi:10.1097/JU.0000000000004186, 2024. |
More Info |
1 Dec 2024 ![]() |
![]() |
|||||
Ultrasonic propulsion is an investigational procedure for awake patients. Our purpose was to evaluate whether ultrasonic propulsion to facilitate residual kidney stone fragment clearance reduced relapse. |
![]() |
Histotripsy-induced bactericidal activity correlates to size of cavitation cloud in vitro Ambekar, P.A., Y.-N. Wang, T.D. Khokhlova, G.P.L. Thomas, P.B. Rosnitskiy, K. Contreras, D.F. Leotta, A.D. Maxwell, M. Bruce, S. Pierson, S. Totten, Y.N. Kumar, J. Thiel, K.T. Chan, W.C. Liles, E.P. Dellinger, A. Adedipe, W.L. Monsky, and T.J. Matula, "Histotripsy-induced bactericidal activity correlates to size of cavitation cloud in vitro," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 71, 1868-1878, doi:10.1109/TUFFC.2024.3476438, 2024. |
More Info |
9 Oct 2024 ![]() |
![]() |
|||||
Large abscesses are walled-off collections of pus and bacteria that often do not respond to antibiotic therapy. Standard of care involves percutaneous placement of indwelling catheter(s) for drainage, a long and uncomfortable process with high rehospitalization rates. The long-term goal of this work is to develop therapeutic ultrasound approaches to eradicate bacteria within abscesses as a noninvasive therapeutic alternative. Inertial cavitation induced by short pulses of focused ultrasound (histotripsy) is known to generate lethal mechanical damage in bacteria. Prior studies with Escherichia coli (E. coli) in suspension demonstrated that bactericidal effects increase with increasing peak negative amplitude, treatment time, and duty cycle. The current study investigated correlates of bactericidal activity with histotripsy cavitation cloud size. Histotripsy was applied to E. coli suspensions in 10-mL sample vials at 810 kHz, 1.2 MHz, or 3.25 MHz for 40 min. The cavitation activity in the sample vials was separately observed with high-speed photography. The cavitation cloud area was quantified from those images. A linear relationship was observed between bacterial inactivation and cavitation cloud size ( R2 = 0.98 ), regardless of the acoustic parameters (specifically frequency, pulse duration, and power) used to produce the cloud. |