![]() |
Jie Yang Principal Physicist jieyang@apl.washington.edu Phone 206-685-7617 |
Education
B.S. Physics, Ocean University of Qingdao, China, 1999
Ph.D. Mechanical Engineering, Georgia Institute of Technology, 2006
Videos
![]() |
TREX13: Target and Reverberation Experiment 2013 TREX13 is a large-scale, collaborative ocean acoustics experiment supported by both the U.S. Office of Naval Research (ONR) and the Strategic Environmental Research and Development Program (SERDP). |
More Info |
5 Dec 2013
|
![]() |
|||||
The experiment will take place in the Gulf of Mexico near Panama City Beach, Forida in the spring of 2013 and will involve researchers from both the United States and Canada. |
Publications |
2000-present and while at APL-UW |
![]() |
Surface wave development and ambient sound in the ocean Thomson, J., J. Yang, R. Taylor, E.J. Rainville, K. Zeiden, L. Rainville, S. Brenner, M. Ballard, and M.F. Cronin, "Surface wave development and ambient sound in the ocean," J. Geophys. Res., 129, doi:10.1029/2024JC021921, 2024. |
More Info |
22 Dec 2024 ![]() |
![]() |
|||||
Wind, wave, and acoustic observations are used to test a scaling for ambient sound levels in the ocean that is based on wind speed and the degree of surface wave development (at a given wind speed). The focus of this study is acoustic frequencies in the range 120 kHz, for which sound is generated by the bubbles injected during surface wave breaking. Traditionally, ambient sound spectra in this frequency range are scaled by wind speed alone. In this study, we investigate a secondary dependence on surface wave development. For any given wind-speed, ambient sound levels are separated into conditions in which waves are 1) actively developing or 2) fully developed. Wave development is quantified using the non-dimensional wave height, a metric commonly used to analyze fetch or duration limitations in wave growth. This simple metric is applicable in both coastal and open ocean environments. Use of the wave development metric to scale sound spectra is first motivated with observations from a brief case study near the island of Jan Mayen (Norwegian Sea), then robustly tested with long time-series observations of winds and waves at Ocean Station Papa (North Pacific Ocean). When waves are actively developing, ambient sound levels are elevated 23 dB across the 120 kHz frequency range. This result is discussed in the context of sound generation during wave breaking and sound attenuation by persistent bubble layers. |
![]() |
Evaluation of the RainFARM statistical downscaling technique applied to IMERG over global oceans using Passive Aquatic Listener in situ rain measurements Bytheway, J.L., E.J. Thompson, J. Yang, and H. Chenc, "Evaluation of the RainFARM statistical downscaling technique applied to IMERG over global oceans using Passive Aquatic Listener in situ rain measurements," J. Hydrometeorol., 24, 2351-2367, doi:10.1175/JHM-D-23-0090.1, 2023. |
More Info |
1 Dec 2023 ![]() |
![]() |
|||||
High-resolution oceanic precipitation estimates are needed to increase our understanding of and ability to monitor oceanatmosphere coupled processes. Satellite multisensor precipitation products such as IMERG provide global precipitation estimates at relatively high resolution (0.1°, 30 min), but the resolution at which IMERG precipitation estimates are considered reliable is coarser than the nominal resolution of the product itself. In this study, we examine the ability of the Rainfall Autoregressive Model (RainFARM) statistical downscaling technique to produce ensembles of precipitation fields at relatively high spatial and temporal resolution when applied to spatially and temporally coarsened precipitation fields from IMERG. The downscaled precipitation ensembles are evaluated against in situ oceanic rain-rate observations collected by passive aquatic listeners (PALs) in 11 different ocean domains. We also evaluate IMERG coarsened to the same resolution as the downscaled fields to determine whether the process of coarsening then downscaling improves precipitation estimates more than averaging IMERG to coarser resolution only. Evaluations were performed on individual months, seasons, by ENSO phase, and based on precipitation characteristics. Results were inconsistent, with downscaling improving precipitation estimates in some domains and time periods and producing worse performance in others. While the results imply that the performance of the downscaled precipitation estimates is related to precipitation characteristics, it is still unclear what characteristics or combinations thereof lead to the most improvement or consistent improvement when applying RainFARM to IMERG. |
![]() |
PMEL ocean climate stations as reference time series and research aggregate devices Cronin, M.F., and 14 others including J. Yang and J. Thomson, "PMEL ocean climate stations as reference time series and research aggregate devices," Oceanography, 36, 46-53, doi:10.5670/oceanog.2023.224, 2023. |
More Info |
30 Oct 2023 ![]() |
![]() |
|||||
The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate Stations (OCS) project provides in situ measurements for quantifying air-sea interactions that couple the ocean and atmosphere. The project maintains two OceanSITES surface moorings in the North Pacific, one at the Kuroshio Extension Observatory in the Northwest Pacific subtropical recirculation gyre and the other at Station Papa in the Northeast Pacific subpolar gyre. OCS mooring time series are used as in situ references for assessing satellite and numerical weather prediction models. A spinoff of the PMEL Tropical Atmosphere Ocean (TAO) project, OCS moorings have acted as "research aggregating devices." Working with and attracting wide-ranging partners, OCS scientists have collected process-oriented observations of variability on diurnal, synoptic, seasonal, and interannual timescales, and trends associated with anthropogenic climate change. Since 2016, they have worked to expand, test, and verify the observing capabilities of uncrewed surface vehicles and to develop observing strategies for integrating these unique, wind-powered observing platforms within the tropical Pacific and global ocean observing system. PMEL OCS has been at the center of the UN Decade of Ocean Sciences for Sustainable Development (20212030) effort to develop an Observing Air-Sea Interactions Strategy (OASIS) that links an expanded network of in situ air-sea interaction observations to optimized satellite observations, improved ocean and atmospheric coupling in Earth system models, and ultimately improved ocean information across an array of essential climate variables for decision-makers. This retrospective highlights not only achievements of the PMEL OCS project but also some of its challenges. |